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DEPARTMENT OF MECHANICAL ENGINEERING 

UNIT - 1 CO1: To enable the students to understand 

fundamentals of finite element analysis  and the  

principles involved in the discretization of domain with  

various elements, polynomial interpolation and  

assembly of global arrays. 
UNIT - 2 CO2: To learn the application of FEM equations for 

trusses and Beams 
UNIT - 3 CO3: To learn the application of FEM equations for 

axisymmetric problems and CST 

UNIT - 4 CO4: To learn the application of FEM equations for Iso- 

Parametric and heat transfer problems. 

UNIT - 5 CO5: To learn the application of FEM equations for 

dynamic analysis 

COURSE OBJECTIVES 
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UNIT 1 

CO1: To enable the students to understand fundamentals of finite  
element analysis and the principles involved in the discretization of  

domain with various elements, polynomial interpolation and  
assembly of global arrays. 

INTRODUCTION TO FEM & ONE-DIMENSIONAL 

PROBLEMS 

http://www.mrcet.ac.in/


UNIT – I (SYLLABUS) 

Introduction to FEM: 

• Introduction to Finite Element Method for solving field problems, Stress 
and Equilibrium, Strain - Displacement relations, Stress - strain relations. 

Linear Programming Problems: 

• finite element modeling, local coordinates and shape functions. Potential  
Energy approach, Assembly of Global stiffness matrix and load vector.  
Finite element equations, Treatment of boundary conditions. 



LECTURE LECTURE TOPIC KEY ELEMENTS LEARNING OBJECTIVES 

1. Introduction Definition Understanding of Concept of FEM 

(B2) 

2. Finite Element Method for 

solving field problems 

Understanding of Concept of FEM 

(B2) 

Apply FEM Method for different  

fields (B3) 

3. Applications Applications of FEM Understanding of Applications of  

FEM (B3) 

4. Stress and Equilibrium Strain 

- Displacement relations, 

Stress - strain relations 

Derivation Understanding the relation 

between stress and strain(B2)  

Apply relation between stress and  

strain on 3D(B3) 

5 finite element modeling, local 

coordinates and shape 

functions 

Understanding the concept of 

shape functions(B2) 

Evaluate the shape function for  

2D(B5) 

6 Potential Energy approach 

 

 

DEPARTMEN 

 

 

 

 

T OF MECHANICAL ENGINEERING 

Understanding the concept of 

Rayleigh Ritz method(B2) 

COURSE OUTLINE 
UNIT – 1 
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LECTURE LECTURE TOPIC KEY ELEMENTS LEARNING OBJECTIVES 

6. Assembly of Global stiffness 

matrix and load vector 

Derivation Understanding of Assembly of 

Global stiffness matrix and load 

vector(B2) 

Apply for a bar element (B3) 

7. Finite element equations, 

Treatment of boundary 

conditions. 

Apply FEM Method for bar element 

(B3) 

Understanding of Treatment of  

boundary conditions. (B2) 

valuate the results for bar(B5) 

COURSE OUTLINE 
UNIT – 1 



www.mrcet.ac.in 

LECTURE 1 

Introduction to FEM 
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DEPARTMENT OF MECHANICAL ENGINEERING 

LECTURE 1 

• History of FEM 

• Method of Engineering analysis 

• Numerical Method 

• Applications of FEM 

Introduction FEM 

TOPICS TO BE COVERED 



INTRODUCTION TO FEM 

DEPARTMENT OF MECHANICAL ENGINEERING 

The finite element analysis is a numerical technique. In this method all the complexities  

of the problems, like varying shape, boundary conditions and loads are maintained as they  

are but the solutions obtained are approximate. 

 
The fast improvements in computer hardware technology and slashing of cost of  

computers have boosted this method, since the computer is the basic need for the  

application of this method. 

 
A number of popular brand of finite element analysis packages are now available  

commercially Some of the popular packages are STAAD-PRO, GT-STRUDEL, NASTRAN,  

NISA and ANSYS. Using these packages one can analyze several complex structures. 



METHODS OF ENGINEERING ANALYSIS 

DEPARTMENT OF MECHANICAL ENGINEERING 

There are three methods are adopted for analyzing the product 

 
Experimental methods 

In these methods the actual products or their proto type models or atleast their  

material specimen are tested by using some equipments 

Ex: UTM, Rockwell hardness tester 

 
 

Analytical methods 

These methods are theoretically analyzing methods. Only simple and regular 

shaped products like beams, shafts, plates can be analyzed by these methods 

 
Numerical methods 

For the products of complicated sizes and shapes with complicated material  

properties and boundary conditions getting solution using analytical methods is  

highly difficult. In such situation the numerical method can be employed 



NUMERICAL METHOD 

DEPARTMENT OF MECHANICAL ENGINEERING 

There are three numerical methods 

 
Functional approximating methods 

Finite element method 

Finite difference method 



APPLICATIONS 
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ADVANTAGES 

DEPARTMENT OF MECHANICAL ENGINEERING 

Using FEM we are able to 

 
 model irregular shaped bodies quite easily 

 
handle general load conditions without difficulty 

 
model bodies composed of several different materials because the element 

equations are evaluated individually 

 
handle unlimited numbers and kinds of boundary conditions 

 
vary the size of the element to make it possible to use small elements 

 
alter the finite element model easily and cheaply 

 
include dynamic effects 



DISADVANTAGES 

DEPARTMENT OF MECHANICAL ENGINEERING 

The finite element method is time consuming process 

 
FEM cannot produce exact results as those of analytical methods 
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LECTURE 2 

Equations of Equilibrium for 3D Body 

http://www.mrcet.ac.in/


DEPARTMENT OF MECHANICAL ENGINEERING 

LECTURE 2 

• Derivation 

• Stress and strain relations 

• Plane stress 

• Plane strain 

Equations of Equilibrium for  

3D Body 

TOPICS TO BE COVERED 



EQUATIONS OF EQUILIBRIUM FOR 3D BODY 

DEPARTMENT OF MECHANICAL ENGINEERING 

Typical three dimensional element of size dx × dy × dz. Face abcd may  

be called as negative face of x and the face efgh as the positive face of  

x since the x value for face abcd is less than that for the face efgh. 

Similarly the face aehd is negative face of y and bfgc is positive face of 

y. Negative and positive faces of z are dhgc and aefb. The direct 

stresses σ and shearing stresses τ acting on the negative faces are  

shown in the Fig. with suitable subscript. It may be noted that the first  

subscript of shearing stress is the plane and the second subscript is 

the direction. Thus the τ xy means shearing stress on the plane where  

x value is constant and y is the direction. 



EQUATIONS OF EQUILIBRIUM FOR 3D BODY 
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EQUATIONS OF EQUILIBRIUM FOR 

3D BODY 

DEPARTMENT OF MECHANICAL ENGINEERING 



PLANE STRESS PROBLEM  

The thin plates subject to forces in their plane only, fall under this 

category of the problems. Fig. shows a typical plane stress problem. In 

this, there is  
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PLANE STRESS PROBLEM 
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PLANE STRAIN PROBLEM 

A long body subject to significant lateral forces but very little 

longitudinal forces falls under this category of problems. Examples of 

such problems are pipes, long strip footings, retaining walls, gravity 

dams, tunnels, etc. In these problems, except for a small distance at the 

ends, state of stress is represented by any small longitudinal strip. The 

displacement in longitudinal direction (z-direction) is zero in typical 

strip 

DEPARTMENT OF MECHANICAL ENGINEERING 
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PLANE STRAIN PROBLEM 
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LECTURE 3 

• Rayleigh Ritz method 

TOPICS TO BE COVERED 



A generic problem in 1D  

0  x  1 x  0; 
dx 2 

u  0 at x  0 

u  1 at x  1 

d 2u 
 

Approximate solution strategy: 

Guess 

Where o(x), 1(x),… are “known” functions and ao, a1, etc are 

constants chosen such that the approximate solution 

1. Satisfies the boundary conditions 

2. Satisfies the differential equation 

Too difficult to satisfy for general problems!! 

u(x)  a0o (x)  a11 (x)  a22 (x)  ... 



Potential energy 

  Strain  energy (U)  potential energy of loading W 

The potential energy of an elastic body is defined as 
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F 

u 

F 

x 

k 

k 
u 

k 

1 

Hooke’s Law 

F = ku 

Strain energy of a linear spring 

F = Force in the spring 

u = deflection of the spring 

k = “stiffness” of the spring 



Strain energy of a linear spring 

F 

u u+du 

Differential strain energy of the spring for a  

small change in displacement (du) of the  

spring 

dU  Fdu 

For a linear spring 

dU  kudu 

The total strain energy of the spring 

u 

0 2 
k u du  

1 
k u 2 U   

dU 



Strain energy of a nonlinear spring 

F 

u u+du 

dU  Fdu 

The total strain energy of the spring 

u 

0 
F du  Area under the force  dispalceme nt curve U   

dU 



Potential energy of the loading (for a single spring as in the figure) 

W  Fu 

2 
Π  

1 
ku 2  Fu 

F 

x 

k 

k 
u 

 
Potential energy of a linear spring 

  Strain  energy (U)  potential energy of loading W 



Principle of minimum potential energy for a system of springs 

For this system of spring, first write down the total potential energy of the system 

as: 

3x 
2 

)2 

  2 
 

1 
k (d  d )2  

 Fd   
1 

k (d 2 3x 2 x 1 2 x system 

Obtain the equilibrium equations by minimizing the potential energy 

k1 F 

x 

k 2 

d1x d2x 
d3x 

2 x 

3x 

system 

2 x 

system 

)  F  0 Equation (2)  k2 (d3x   d 
d 

 

 k1d2 x   k2 (d3x   d2 x )  0 Equation (1) 
d 

 



Principle of minimum potential energy for a system of springs 

In matrix form, equations 1 and 2 look like 

 
 

   
 

0 
d  F  

 k k 

2 x 

 2 2  3x    

2 k1  k2  k d 

Does this equation look familiar? 

 
Also look at example problem worked out in class 



Axially loaded elastic bar 

x 

y 

x=0 x=L 

A(x) = cross section at x 

b(x) = body force distribution (force per 

unit length) 

E(x) = Young’s modulus 

u(x) = displacement of the bar at x 

x 

F 

ε  
du Axial strain 

Axial stress 
du  

dx 

dx 

  Eε  E 

Strain energy per unit volume of the bar 
2 

1 
 

2  dx  

1  du 
2 

dU  σε  E 

Strain energy of the bar 

                                             2 U   dU   
1 
σε dV  

L 1 
σε Adx since dV=Adx 



Axially loaded elastic bar 

 

Strain energy of the bar 

   
 

 
 L L 

0 

2 

0 
dx 

 dx  

du 
EA 

1 

2 
σεA dx  

1 

2 
U  

Potential energy of the loading 

0 
bu dx  Fu(x  L) W   

L 

Potential energy of the axially loaded bar 

EA 
1 du 

2 0 0 

2 

bu dx  Fu(x  L) dx   
dx 

 
  

  
    

L L 



Principle of Minimum Potential Energy 

Among all admissible displacements that a body can have, the one that 

minimizes the total potential energy of the body satisfies the strong formulation 

Admissible displacements: these are any reasonable displacement that you  

can think of that satisfy the displacement boundary conditions of the original  

problem (and of course certain minimum continuity requirements). Example: 

Exact solution for the displacement 

field uexact(x) 

Any other “admissible” 

displacement field w(x) 

0 



Lets see what this means for an axially loaded elastic bar 

A(x) = cross section at x 

b(x) = body force distribution (force per 

unit length) 

E(x) = Young’s modulus 
x 

y 

x=0 x=L 

x 

F 

Potential energy of the axially loaded bar corresponding to the 

exact solution uexact(x) 

dx 

du 
EA 

exact 
0 

exact 
0 

2 

exact 
exact 

(x  L) dx  Fu  
 

 
 
 

 
(u )  

1  

2 
  

L 

dx  bu 
L 



Potential energy of the axially loaded bar corresponding to the 

“admissible” displacement w(x) 

EA 
1 dw 

2 0 0 

2 

bw dx  Fw(x  L) dx   
dx 

 
  

  
(w)    

L L 

Any other “admissible”  

displacement field w(x) 

L 0 

Exact solution for the displacement  

field uexact(x) 

 
x 



Example: 

AE 0  x  L  b  0; 
dx2 

d 2u 

dx 
DEPARTMENT OF MECHANICAL ENGINEERING 

du 
exact 

0 
exact 

1 

0 

2 

exact 
exact 

1 7 
u dx  u (x  1)   

6 
dx   

 

 
 
 

 
(u )  

1  

2 
  

u  0 at x  0 

 
EA 

du 
 F at x  L  

dx 

 
Assume EA=1; b=1; L=1; F=1 

Analytical solution is 

x2 

uexact   2x   
2 

Potential energy corresponding to this analytical solution 



1 

0 

1 
2 

w dx  w(x  1)  1 dx    
1 dw 

2 0  dx  

  
(w)    

Now assume an admissible displacement 

 

w  x 

Why is this an “admissible” displacement? This displacement is quite arbitrary.  

But, it satisfies the given displacement boundary condition w(x=0)=0. Also,  

its first derivate does not blow up. 

 

 
Potential energy corresponding to this admissible displacement 

Notice 

(uexact )  (w) 

 
7 

 1  
6 

since 



Principle of Minimum Potential Energy 

Among all admissible displacements that a body can have, the one that 

minimizes the total potential energy of the body satisfies the strong formulation 

Mathematical statement: If ‘uexact’ is the exact solution (which satisfies the  

differential equation together with the boundary conditions), and ‘w’ is an admissible  

displacement (that is quite arbitrary except for the fact that it satisfies the  

displacement boundary conditions and its first derivative does not blow up),  

then 

 

 

(u exact )  (w) 

unless w=uexact (i.e. the exact solution minimizes the potential energy) 



he Principle of Minimum Potential Energy and the strong formulation are 

exactly equivalent statements of the same problem. 

 

The exact solution (uexact) that satisfies the strong form, renders the potential  

energy of the system a minimum. 

 
So, why use the Principle of Minimum Potential Energy? 

The short answer is that it is much less demanding than the strong formulation. 

The long answer is, it 

1. requires only the first derivative to be finite 

2.incorporates the force boundary condition automatically. The admissible  

displacement (which is the function that you need to choose) needs to satisfy  

only the displacement boundary condition 



Finite element formulation, takes as its starting point, not the strong formulation,  

but the Principle of Minimum Potential Energy. 

Task is to find the function ‘w’ that minimizes the potential energy of the system 

From the Principle of Minimum Potential Energy, that function ‘w’ is the exact 

solution. 

dw 
EA 

1 

2 0 0 

2 

bw dx  Fw(x  L) dx  
 

 
dx 

 
  

 
(w)    

L L 



Step 1. Assume a solution 

 

w(x)  a0o (x)  a11 (x)  a22 (x)  ... 

 
Where o(x), 1(x),… are “admissible” functions and ao, a1, etc are 

constants to be determined from the solution. 

Rayleigh-Ritz Principle 

The minimization of the potential energy is difficult to perform exactly. 

The Rayleigh-Ritz principle is an approximate way of doing this. 



Step 2. Plug the approximate solution into the potential energy 

dw 
EA 

1 

2 0 0 

2 

Fw(x  L) bw dx  dx   
 

 
 dx  

 
(w)    

L L 

Rayleigh-Ritz Principle 

dx dx 

1 

2 

0 
0 0 1 1 

0 

2 

1 
1 

 

 

 

  ... dx 
 

 (a 0 , a1 ,...)  

 

  a EA a0 

L 

L 

 F a00 (x  L)  a11 (x  L)  ... 

b a   a   ... dx 

d d0 



Step 3. Obtain the coefficients ao, a1, etc by setting 

(w) 
 0, i  0,1,2,... 

Rayleigh-Ritz Principle 

ai 

The approximate solution is 

u(x)  a0o (x)  a11 (x)  a22 (x)  ... 

Where the coefficients have been obtained from step 3 



Example of application of Rayleigh Ritz Principle 

x 

x=0 x=2 

x=1 

F 
E=A=1 

F=2 

D E P A R T M E N T  O F  M E C H A N I C A L  E N G I N E E R I N G 

–– 
–––– 

2 

0 

2 

dx 2 

1 du 
dx  Fu(x  1) (u)    

  

  
 

PotentialEnergy  
of load F applied  
at x1 

StrainEnergy 

The potential energy of this bar (of length 2) is 

Let us assume a polynomial “admissible” displacement field 

 

u  a  a x  a  x2  
0  1 2 

Note that this is NOT the analytical solution for this problem. 



Example of application of Rayleigh Ritz Principle 

 

For this “admissible” displacement to satisfy the displacement boundary 

conditions the following conditions must be satisfied: 

 
u(x  0)  a0  0 

u(x  2)  a0   2a1   4a2   0 

Hence, we obtain 

a0  0 

a1  2a2 

Hence, the “admissible” displacement simplifies to 

D E P A R T M E N T  O F  M E C H A N I C A L  E N G I N E E R I N G 

2 

2 

0 1 2 

 a   2x  x  
u  a  a x  a  x2 



Now we apply Rayleigh Ritz principle, which says that if I plug this approximation  

into the expression for the potential energy , I can obtain the unknown (in this  

case a2) by minimizing  

4 D E P A R T M E N T  O F  M E C H A N I C A L  E N G I N E E R I N G 

3 

dx  Fu(x  1) (u)  

2 
 a   

3 

2 
 

8 
a  2  0 

2 

2 

2 

2 

2 
 2x  dx  Fa  x  

at x1 

2 
2 

2 

2 

2 
2 

 

 
 

 
 

1 d  

2 0   dx  

4 

3 

 
 

  
1 du 

2 0   dx  

  

 

 
 0 

a2 

a  2a 

 2x  a  x  

 

evaluated 



2 

D E P A R T M E N T  O F  M E C H A N I C A L  E N G I N E E R I N G 

2 

0 1 2 

 a   2x  x  
u  a  a x  a  x2 

4 
  

3   2x  x2  

Hence the approximate solution to this problem, using the Rayleigh-Ritz 

principle is 

Notice that the exact answer to this problem (can you prove this?) is 

  
 

2  x 

x for 0  x  1 

for 1  x  2 
u 

exact 



0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2 
0 

0 

0.2 

0.4 

0.6 

0.8 

1 

1 

x 

Ex act solu tion 

 

 
Approx 

 

 
imate 

solut ion 

The displacement solution : 

D E P A R T M E N T  O F  M E C H A N I C A L  E N G I N E E R I N G 

How can you improve the approximation? 
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LECTURE 4 

• Shape functions 

• One dimensional 

problems 

TOPICS TO BE COVERED 



Axially loaded elastic bar 

A(x) = cross section at x 

b(x) = body force distribution (force per 

unit length) 

E(x) = Young’s modulus 
x 

y 

x=0 x=L 

x 

F 

Potential energy of the axially loaded bar corresponding to the 

exact solution u(x) 

EA 
1 du 

2 0 0 

2 

bu dx  Fu(x  L) dx   
dx 

 
  

  
(u)    

L L 

Potential energy of the bar corresponding to an admissible displacement w(x) 

dx 

dw 
EA 

1 

2 0 0 

2 

bw dx  Fw(x  L) dx    
  

  
(w)    

L L 



Finite element idea: 

 

Step 1: Divide the truss into finite elements connected to each other through 

special points (“nodes”) 

El #1 El #2 El #3 

1 

D E P A R T M E N T  O F  M E C H A N I C A L  E N G I N E E R I N G 

2 3 4 

bw dx  Fw(x  L) dx  
dw 

EA 
1 

2 
(w)  

0 0 

2 

 
 

 
 dx  

 
  

L L 

Total potential energy=sum of potential energies of the elements 



El #1 El #2 El #3 

x1=0 

D E P A R T M E N T  O F  M E C H A N I C A L  E N G I N E E R I N G 

x2 x3 x4=L 

bw dx dx  EA 
2 2 

2 

1 
 (w)      

1 dw 

2  dx  

  x 

x1 

x 

x1 

 Fw(x  L) bw dx dx  EA (w)  
0 0 

2 

  
1 dw 

2  dx  

  
  

L L 

Total potential energy 

Potential energy of element 1: 

bw dx dx  EA 
1 dw 

2 

3 3 

2 
 (w)      

 dx  

  x 

x2 

x 

x2 

Potential energy of element 2: 

2 



El #1 El #2 El #3 

x1=0 

D E P A R T M E N T  O F  M E C H A N I C A L  E N G I N E E R I N G 

x2 x3 x4 

Total potential energy=sum of potential energies of the elements 

 

(w)  1 (w)   2 (w)   3 (w) 

Potential energy of element 3: 

 Fw(x  L) bw dx EA 
4 4 

2 

3 
 (w)    

1 dw 

2  dx  

  
dx    

x 

x3 

x 

x3 



Step 2: Describe the behavior of each element 

 
In the “direct stiffness” approach, we derived the stiffness matrix 

of each element directly (See lecture on Springs/Trusses). 

 
Now, we will first approximate the displacement inside each element and then  

show you a systematic way of deriving the stiffness matrix (sections 2.2 and 3.1 of  

Logan). 

 
TASK 1: APPROXIMATE THE DISPLACEMENT WITHIN EACH ELEMENT  

TASK 2: APPROXIMATE THE STRAIN and STRESS WITHIN EACH ELEMENT  

TASK 3: DERIVE THE STIFFNESS MATRIX OF EACH ELEMENT (this class)  

USING THE RAYLEIGH-RITZ PRINCIPLE 
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Summary 

 
Inside an element, the three most important approximations in terms of the 

nodal displacements (d) are: 

 
 

Displacement approximation in terms of shape functions 
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  EB d 

(1) w(x)  N d 

ε(x)  B d 

Strain approximation in terms of strain-displacement matrix 

(2) 

Stress approximation in terms of strain-displacement matrix and Young’s modulus 

(3) 



The shape functions for a 1D linear element 

2x 

1 2 

 x - x1 

1x 

2 1 

d 
x  x x  x 

w(x)  
x2 - x 

d 

Within the element, the displacement approximation is 

x 
x1 x2 

El #1 

2 1 

x 2  - x 
1 

x  x 
N (x)  

x 2   x1 

x - x1 N 2 (x)  

1 

D E P A R T M E N T  O F  M E C H A N I C A L  E N G I N E E R I N G 

1 



Displacement approximation in terms of shape functions 

   
 

2 

d2x  

d1x  

x2   x1 

x - x  x - x1  

x2   x1 

w(x)  

Strain approximation 

Stress approximation 

For a linear element 

 
  
 1x 

1 2 d2x  

d 
1 1  

1 ε  
dw 

 
dx x  x 

 
  
 1x 

1 2 d2x  

d 
1 1  

x  x 

E 
  Eε  
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For the entire bar, the displacement approximation is 
 

w(x)  w(1) (x)  w(2) (x)  w(3) (x) 

Where w(i)(x) is the displacement approximation within element (i). 

Let use set d1x=0. Then, can you seen that the above approximation does satisfy 

the two conditions of being an admissible function on the entire bar, i.e., 

Why is the approximation “admissible”?  

El #1 El #2 El #3 

x1=0 x2 x3 x4=L 

dx 
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(1) w(x  0)  0 

(2) 
dw 

exists 



2 

D E P A R T M E N T  O F  M E C H A N I C A L  E N G I N E E R I N G 

1 1 
1 

2 
 (w)  

1 x 

x x 
  Adx  

x2  

bw dx   

Potential energy of element 1: 

TASK 3: DERIVE THE STIFFNESS MATRIX OF EACH ELEMENT USING THE 

RAYLEIGH-RITZ PRINCIPLE 

Lets plug in the approximation 

w(x)  N d 

   b dx 2 

1 1 

T 

1 

1 

2 

x T 
 (d)  d 

T x2 

NT 

x x 
B  EB Adx d  d   

ε(x)  B d   EB d 



2 

x1 

T 
B  EB Adx 

x 

 

Lets see what the matrix 

is for a 1D linear element 

 
 

Recall that 

 1 1  
1 

x 2   x1 

B  

Hence 
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 
 
   

   
1  

 1 

 1 1 

x  x  

x  x 
 

1 
 E 

x  x 
B E B  

   
T 

1 

1 1 1   
x  x  

E 

1 1  

E 

 1   1     1  

2 

1 2 

2 

2 1 

2 1 2 1    

   



  2 2 2 

1 1 1 

T   1  

x2 

  1  
B  EB Adx  AEdx  AEdx 

x2 

x x x 

x x x 

 
2  

 
2   

1 1 

 x1  1 1  
 

1 1 

 x1  1 1  
   

Remembering that (x2-x1) is the length of the element, this is the stiffness matrix we 

had derived directly before using the direct stiffness approach!! 

  2 
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2 

1 1 

T 2 

2 
B  EB Adx  AEdx 

x2 

AE  1 1 

1  x  x   1 
2 1   

x x 

x x 

1 1   1    AE(x  x1 )  1 
 

2     
x2   x1   x1  1 1  

1 

1 1  

 

  

Now, if we assume E and A are constant 



Then why is it necessary to go through this complicated procedure?? 

1. Easy to handle nonuniform E and A 

2. Easy to handle distributed loads 

For nonuniform E and A, i.e. E(x) and A(x), the stiffness matrix of the linear element 

will NOT be 

EA  1 1 

1  x  x  1 
2 1   

But it will ALWAYS be 

x 

x1 

k   
2 

BT EB Adx 
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Now lets go back to 

1 
1           

2 

x2 

NT 

1 

2 

x x 

k fb 

        b 
 

1 
dT  kd  dT   f 

  
 

b dx  (d)  
1 

dT  x2  

BT EB Adx 


d  dT   
  

  
  
  

 
 

 
 
 

   

x 

x1 

k   
2 

BTEB Adx 

Element stiffness matrix 

Element nodal load vector due to distributed body force 

b dx 
1 

 
x 

x 

2  

NT 

    b f  
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Apply Rayleigh-Ritz principle for the 1D linear element 

 
 

 
Π1 (d) 

 0
 

 0 
d2x 

Π1 (d ) 

d1x 

    b 
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    b 

T T 

 kd  f 

d k d  d f 

d 

 (d) 
 

 (d)  
1 

2 

1 

1 

d 

Π (d) 
  1  0 

Recall from linear algebra (Lecture notes on Linear Algebra) 



Hence 

Π1 (d) 
 0 

d 

 kd  fb  

D E P A R T M E N T  O F  M E C H A N I C A L  E N G I N E E R I N G 

Exactly the same equation that we had before, except that the stiffness 

matrix and nodal force vectors are more general 



Recap of the properties of the element stiffness matrix 

1. The stiffness matrix is singular and is therefore non-invertible 

2. The stiffness matrix is symmetric 

3. Sum of any row (or column) of the stiffness matrix is zero! 

k11 

Why? 

x 

x1 

k   
2 

BTEB Adx 
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Sum of any row (or column) of the stiffness matrix is zero 

 

Consider a rigid body motion of the element 

1 
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2 

1x d =1 d2x=1 

  
1 

d  
1 ε  0  B d Element strain 

 
  

2 

1 

2 

x1 

T 

T 
B  E Bd Adx 

 
0 

0
 

x 

x 
 k d   B EB Adx d 

x 

 

  

 

 

k21   k22   0  k11  k12  0 and 

1 0 12   
      

   

 21 22  1 0 k 
k 

k 
k d  

k11 



The nodal load vector 

1 2 

d1x 
d2x 

b(x) 

 

 

 

 

 
 

 

   
 2 x  

N b dx  

 

 

 1 

  b dx 
2 

 

1 

x2 

2 1 

x1  N 2 (x)  

x N (x)  

x 

x2 

x 

N 2 (x) b dx  

N1 (x) b dx  

x 

x1 

fb   

f 

 f1x  

b dx 
1 

 
x 

x 

2  

NT 

    b f  

2 

1 

2 

1 

2 

1 

 

 
x 

x 
2 x 

x 

x 
1x 

N (x) b dx f  

N (x) b dx f  

“Consistent” nodal loads 
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b(x) /unit length 
1 2 

d1x 
d2x 

1 2 

d1x 
d2x 

Replaced by 
f1x 

f2x 

A distributed load is represented by two nodal loads in a consistent manner 

 
 
e.g., if b=1 

2 

D E P A R T M E N T  O F  M E C H A N I C A L  E N G I N E E R I N G 

2 

2 

2 
N (x) dx  

2 2 x 

2 

1 
N (x) dx  

1 
N (x) b dx  

1x 

1 1 

x2 

1 

x2 

1 

x2 

f  

f  

x 

x2 

x 

x  x1 N (x) b dx  

x  x1 

x x 

  

  

Divide the total force into two equal halves and lump them at the nodes 

What happens if b(x)=x? 



  EB d 

Summary: For each element 

 

Displacement approximation in terms of shape functions 

w(x)  N d 

ε(x)  B d 

Strain approximation in terms of strain-displacement matrix 

Stress approximation 

x 

x1 

k   
2 

BTEB Adx 

Element stiffness matrix 

b dx 
1 

 
x 

x 

2  

NT 

    b f  

Element nodal load vector 
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What happens for element #3? 

Fw(x  L) bw dx  dx  EA 
1 dw 

2 

4 4 

2 

3 
 (w)    

 dx  

  
  

x 

x3 

x 

x3 

For element 3 

   
 

4 

d4x  

d3x  

x4   x3 

x - x x - x3 

x4   x3 

w(x)  

 w(x  L)  d4x 

The discretized form of the potential energy 
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   4 

3 3 
3 4x 

b dx Fd 
1 

2 

x T T x4 

NT T 
  (d)  d 

x x 
B  EB Adx d  d   



What happens for element #3? 

Π3 (d) 
 0 

d 

  
F 

   b 
 kd  f  

0 

Now apply Rayleigh-Ritz principle 
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Hence there is an extra load term on the right hand side due to the concentrated 

force F applied to the right end of the bar. 

 
NOTE that whenever you have a concentrated load at ANY node, that load 

should be applied as an extra right hand side term. 



Step3:Assembly exactly as you had done before, assemble the global stiffness  

matrix and global load vector and solve the resulting set of equations by properly  

taking into account the displacement boundary conditions 
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Problem: 

x 

24” 

3” 

6” 

P=100lb 

12” 
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E=30x106 psi 

=0.2836 lb/in3 

Thickness of plate, t=1” 

Model the plate as 2 finite elements and 

(1) Write the expression for element stiffness matrix  

and body force vectors 

(2) Assemble the global stiffness matrix and load 

vector 

(3) Solve for the unknown displacements 

(4) Evaluate the stress in each element 

(5) Evaluate the reaction in each support 



Finite element model 

x 

12” 

12” 

1 

2 

3 

El #1 

El #2 P=100lb 

Element # Node 1 Node 2 

1 1 2 

2 2 3 

Node-element connectivity chart 

Stiffness matrix of El #1 

  12 12 

k (1)   T 

0 0 

   E  

(12)2 

1 1 
B  EB Adx  A(x)dx 1 1  

 

  
  

12 12 12 
3 

0 0 0 
A(x)dx  t(6  0.125x)dx  t (6  0.125x)dx  63 in    

 k (1)   
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(12)2 
63 

 1 1 
 13.125106   1 1 

1  1 1 1  
E 

    

Solution (1) 



Stiffness matrix of El #2 

  24 24 

k (2)   T 

12 12 

   E  

(12)2 
B  EB Adx  A(x)dx 

1 1 

1  1 

 

  
  

12 

24 

A(x)dx  
12 12 

24 24 3 
t(6  0.125x)dx  t (6  0.125x)dx  45 in    

45   k (2)     9.375106  
 

E 
 

(12)2 
1 1  1 

 1 1  1 1 

1  

Now compute the element load vector due to distributed body force (weight) 

b dx 
1 

 
x 

x 

2  

NT 

   b f  

x 

12” 

6” 

4.5” 

x 

6 - 0.125x 

D E P A R T M E N T  O F  M E C H A N I C A L  E N G I N E E R I N G 
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  
12 

0 0 

12 

0 

1 

(1) 0 

A( x) 

b dx  N A dx 

N (x) 

12 N (1) (x) 

T 

   b 

T 
N A dx 

f 
12 

(1)  NT 

  

  t(6  0.125x) dx 
 2  

33 
 0.2836   lb 

30 

 
9.3588 
  lb 
 8.508  

   

  

 

For element #1 

x 

12” 

1 

2 
El #1 

2 N (1) (x) 

(1) N1 (x) 

12 
2 

(1) 

1 
12 

x 

N 

N (1) (x)  

12  x 
(x)  

Superscript in parenthesis indicates  

element number 



  
24 

12 12 

24 

12 

2 

12 

A( x) 
N (2) (x) 

24 N (2) (x) 

b dx  N A dx 
T 

   b 

T 
N A dx 

f 
24 

(2)  NT 

  

  t(6  0.125x) dx 
 3  

24 
 0.2836   lb 

21 

6.8064 
   lb 

5.9556 

   

  

 

For element #2 

x 

12” 

12” 

1 

2 

3 

El #1 

El #2 

2 N (2) (x) 

3 
N (2) (x) 

(2) 

3 

(2) 

2 

N 

24  x 

12 

(x)  
x 12 

12 

(x)  N 
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Solution (2) Assemble the system equations 

 13.125 

0 

 

K  106  13.125 

13.125 0 

22.5 9.375 

9.375 
 

9.375  

9.3588 
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5.9556 

 5.9556  
  

   b 

 
 

f  fb  f 
concentrated load 

 

concentrated load 

 0  

f 

 
 f  

 
508  6.8064 lb 

8.  
  
  

 
 

 
100lb 
 0  
  

 9.3588  
  f  

 
lb 

115.3144    



Hence we need to solve 
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2x 

 13.125 

0 

 d1x  0 9.3588  R1  
  

106  13.125       
    9.375  d 5.9556 

13.125 

22.5 9.375 d 
 

 
 

115.3144  
 

9.375    3x    

R1 is the reaction at node 1. 

Notice that since the boundary condition at x=0 (d1x=0) has not been taken into  

account, the system matrix is not invertible. 

Incorporating the boundary condition d1x=0 we need to solve the following set of 

equations 

2x 
115.3144   

106  
 22.5 9.375 d    

   
5.9556 

 9.375 9.375  

d    3x    

Solution (3) 



2 x 
in 

5 

5 

d     0.9239610   
 

d 
   

0.9874910  3x    

Solution (4) Stress in elements 

 

Notice that since we are using linear elements, the stress within each element 

is constant. 

In element #1 

 

 (1)   E B(1) d (1) 

 1x 

x2   x1 

 
30106 

d2x 

d 

12 

 23.099 psi 

E   
1 1 

d 
 

 2x  

d1x   0 

 

Solve to obtain 

D E P A R T M E N T  O F  M E C H A N I C A L  E N G I N E E R I N G 



  

d3x -d2x  
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In element #2 

 

 (2)   E B(2) d (2) 

2x 

x3   x2 

d 

12 
 

30106 

 1.5882 psi 

E   
1 1 

d 
 

 3x  
 



Solution (5) Reaction at support 

Go back to the first line of the global equilibrium equations… 

 R1  130.6288 lb (The –ve sign indicates that the force is in the –ve x- 

9.3588  R1   13.125 

0 

 d1x  
  

106  13.125 
 

 
 

115.3144  
 

   
    9.375  d 5.9556 

13.125 0 

22.5 9.375 d2x  

9.375    3x    

Check 

x 

24” 

3” 

12” 

P=100lb 

R1 

6” 
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24 

24 

x0 

x0 
 100  t (6  0.125x) dx 

 130.6288 lb 

R1   P    A(x) dx 

 

The reaction at the wall from force 

equilibrium in the x-direction 

direction) 



Problem: Can you solve for the displacement and stresses analytically? 

 

Check out 

6 

 4.727 109 x2   9.487 107 x for 0  x  12 

for 12  x  24 
anal 

u   
4.727 109 x2   2.0797 107 x  8.8910  

Stress 

anal 
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 (x) 
dx 

 E 
duanal 

dx 
 30106  duanal 
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Comparison of displacement solutions 



Notice: 

1. Slope discontinuity at x=12 (why?) 

2. The finite element solution does not produce the exact solution even  

at the nodes 

3. We may improve the solution by 

(1) Increasing the number of elements 

(2) Using higher order elements (e.g., quadratic instead of linear) 
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Finite element solution 

Analytical solutions 

x (in) 

 

The analytical as well as the finite element stresses are discontinuous across 

the elements 
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Comparison of stress solutions 



Axially loaded elastic bar 

x 

y 

x=0 x=L 

A(x) = cross section at x 

b(x) = body force distribution (force per 

unit length) 

E(x) = Young’s modulus 

x 

F 

Potential energy of the axially loaded bar corresponding to the 

exact solution u(x) 

du 
EA 

1 

2 0 0 

2 

bu dx  Fu(x  L) dx  
 

 
dx 

 
  

 
(u)    

L L 

DEPARTMENT OF MECHANICAL ENGINEERING 



Finite element formulation, takes as its starting point, not the strong formulation,  

but the Principle of Minimum Potential Energy. 

Task is to find the function ‘w’ that minimizes the potential energy of the system 

From the Principle of Minimum Potential Energy, that function ‘w’ is the exact 

solution. 

dw 
EA 

1 

2 0 0 

2 

bw dx  Fw(x  L) dx  
 

 
dx 

 
  

 
(w)    

L L 



EA 
0 0 

2 

bw dx  Fw(x  L) dx    
1 dw 

2  dx  

  
(w)    

L L 

Step 3. Obtain the coefficients ao, a1, etc by setting 

(w) 
 0, i  0,1,2,... 

ai 

Rayleigh-Ritz Principle 

 

Step 1. Assume a solution 

 

 
w(x)  a0o (x)  a11 (x)  a22 (x)  ... 

Where o(x), 1(x),… are “admissible” functions and ao, a1, etc are  

constants to be determined. 

 
Step 2. Plug the approximate solution into the potential energy 



The approximate solution is 

u(x)  a0o (x)  a11 (x)  a22 (x)  ... 

Where the coefficients have been obtained from step 3 



Need to find a systematic way of choosing the approximation functions. 

 
One idea: Choose polynomials! 
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w(x)  a0 Is this good? (Is ‘1’ an “admissible” function?) 

Is this good? (Is ‘x’ an “admissible” function?) w(x)  a1 x 



Finite element idea: 

 

Step 1: Divide the truss into finite elements connected to each other through 

special points (“nodes”) 

El #1 El #2 El #3 

1 
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2 3 4 

bw dx  Fw(x  L) dx  
dw 

EA 
1 

2 
(w)  

0 0 

2 

 
 

 
 dx  

 
  

L L 

Total potential energy=sum of potential energies of the elements 



El #1 El #2 El #3 

x1=0 
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x2 x3 x4=L 

bw dx dx  EA 
2 2 

2 

1 
 (w)      

1 dw 

2  dx  

  x 

x1 

x 

x1 

 Fw(x  L) bw dx dx  EA (w)  
0 0 

2 

  
1 dw 

2  dx  

  
  

L L 

Total potential energy 

Potential energy of element 1: 

bw dx dx  EA 
1 dw 

2 

3 3 

2 
 (w)      

 dx  

  x 

x2 

x 

x2 

Potential energy of element 2: 

2 



El #1 El #2 El #3 

x1=0 
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x2 x3 x4 

Total potential energy=sum of potential energies of the elements 

 

(w)  1 (w)   2 (w)   3 (w) 

Potential energy of element 3: 

 Fw(x  L) bw dx EA 
4 4 

2 

3 
 (w)    

1 dw 

2  dx  

  
dx    

x 

x3 

x 

x3 



Step 2: Describe the behavior of each element 

 
Recall that in the “direct stiffness” approach for a bar element, we derived the  

stiffness matrix of each element directly (See lecture on Trusses) using the  

following steps: 

 
TASK 1: Approximate the displacement within each bar as a straight line  

TASK 2: Approximate the strains and stresses and realize that a bar (with the  

approximation stated in Task 1) is exactly like a spring with k=EA/L 

TASK 3: Use the principle of force equilibrium to generate the stiffness matrix 
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Now, we will show you a systematic way of deriving the stiffness matrix (sections 

2.2 and 3.1 of Logan). 

 
TASK 1: APPROXIMATE THE DISPLACEMENT WITHIN EACH ELEMENT  

TASK 2: APPROXIMATE THE STRAIN and STRESS WITHIN EACH ELEMENT  

TASK 3: DERIVE THE STIFFNESS MATRIX OF EACH ELEMENT (next class)  

USING THE PRINCIPLE OF MIN. POT ENERGY 

 
Notice that the first two tasks are similar in the two methods. The only difference is  

that now we are going to use the principle of minimum potential energy, rather than  

force equilibrium, to derive the stiffness matrix. 
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TASK 1: APPROXIMATE THE DISPLACEMENT WITHIN EACH ELEMENT 

 
Simplest assumption: displacement varying linearly inside each bar 

w(x)  a 0   a1x d2x 
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d1x 
x 

x1 x2 

El #1 

How to obtain a0 and a1? 

 

w(x1 )  a 0   a1x1   d1x  

w(x 2 )  a 0   a1x 2   d2x 



w(x1 )  a 0   a1x1   d1x  

w(x 2 )  a 0   a1x 2   d2x 

Solve simultaneously 

2x 

1 2 

1x 

1 2 

1 

2x 

1 2 

x1 

1x 

1 2 

x 2 

0 

d 
x  x 

d  

x  x  

1 

x  x 

1 
a   

d d  
x  x 

a  

2x 
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2 1x 1 2x 1x 
2 

1 0 d  N (x)d  N (x)d d 
x  x 

- x 
 

x - x1 

x  x 2 1 2 1 

N1 (x) N2 (x) 

“Shape functions” N1(x) and N2(x) 

x 
 a x  w(x)  a 

Hence 



In matrix notation, we write 

w(x)  N d 

Vector of nodal shape functions 

N  N1 (x) N 2 (x)    
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  

 2 1 2 1  

2 

 x x  x 
x 

x - x x - x1 

Vector of nodal displacements 

 
 

 
 

d  
1x 

d 2x  

d 

(1) 



NOTES: PROPERTIES OF THE SHAPE FUNCTIONS 

 
1. Kronecker delta property: The shape function at any node has a value of 1 

at that node and a value of zero at ALL other nodes. 

x 
x1 x2 

El #1 

2 1 

x 2  - x 
1 

x  x 
N (x)  

x 2   x1 

x - x1 N 2 (x)  

1 1 

x - x 
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 1 
x - x 

 N1 (x  x1 )  

x - x 

2 2  0 
x  x 

and N1 (x  x2 )  

1 2 

1 2 

x  x 

2 1 

2 

x  x 
1 N (x)  

Check 



2. Compatibility: The displacement approximation is continuous across 

element boundaries 

d3x   d2x 2x 

3 2 3 2 

2 3 
2 

(2) 

2x 2x 1x 

1 2 

2 2 
2 

(1) 

d 
x - x 

x  x x  x 
w (x  x )  

d d  d 
x2   x1 

  
x2  - x2 

x - x 
  

x2  - x1 

x  x 
w (x  x )  

x 
x1 x2 

El #1 

2x 

2 1 

1x 

2 1 

x - x x - x 

x  x 
 1   d 

x  x 
w(1) (x)  2 d 

3x 2x 
d 

x3  - x  
d   

x - x 2 

x3   x 2 x3   x 2 

w (2) (x)  

x 
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3 El #2 

At x=x2 

Hence the displacement approximation is continuous across elements 



3. Completeness 

N1 (x)  N2 (x)  1 for all x  

N1 (x)x 1  N2 (x)x 2   x for all x 

Use the expressions 

And check 

1 2 

x - x1 

2 

2 1 

2 
1 

x  x 
N (x)  

; 
x - x 

x  x 
N (x)  

 x - x1 
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 
x2 - x 

x 

 1 N1 (x)  N2 (x)  

2 

1 2 

1 

2 1 

2 x  x 
x  x x  x 

and N1 (x) x1  N2 (x) x 

1 

2 x - x 
 

x - x1 

x 2   x1 x 2   x 



Rigid body mode 
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What do we mean by “rigid body modes”? 

 
Assume that d1x=d2x=1, this means that the element should translate in  

the positive x direction by 1. Hence ANY point (x) on the bar should  

have unit displacement. Let us see whether the displacement  

approximation allows this. 

w(x)  N1(x)d 1x   N2 (x)d 2x   N1(x)  N2 (x) 1 

 
YES! 

N1(x)  N2 (x)  1 for all x 



Constant strain states 

N1(x)x1  N2 (x)x2  x at all x 

What do we mean by “constant strain states”? 

 
Assume that d1x=x1 and d2x=x2. The strain at ANY point (x) within the  

bar is 

dx 
Hence,  (x)  

dw(x)  
 1 

Let us see whether the displacement approximation allows this. 

w(x)  N1 (x)d 1x   N2 (x)d 2x   N1 (x)x 1  N2 (x)x 2   x 

YES! 

 (x)  
d2x 
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 d1x    
x2   x1   1 

x2   x1 x2   x1 



Completeness = Rigid body modes + Constant Strain states 
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Compatibility + Completeness  Convergence 

Ensure that the solution gets better as more elements are introduced 

and, in the limit, approaches the exact answer. 



4. How to write the expressions for the shape functions easily (without 

having to derive them each time): 

Start with the Kronecker delta property (the shape function at any node has 

value of 1 at that node and a value of zero at all other nodes) 

1 

1 

2 2 1 

1 
2 

   

x - x   
x - x  x - x   

2 1 

x - x 

x - x   
x 2  - x 

1 

N (x)  

N (x)  

 

x 
x1 x2 

El #1 

2 1 

x 2  - x 
1 

x  x 
N (x)  

x 2   x1 

x - x1 
N2 (x)  

1 1 

Notice that the length of the element = x -x 2 1 

Node at which N1 is 0 

The denominator is 

the numerator evaluated at  

the node itself 
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A slightly fancier assumption: 

displacement varying quadratically inside each bar 

2 3 1 3 

1 2 
3 

1 3 
2 

2 3 

x - x  x - x   
x - xx - x 

x1 - x 2 x3  - x 2  
x - x x - x 

x 2  - x1 x3  - x1  
 - x x x - x 

1 

N (x)  

N (x)  

N (x)  

x 
x1 x2 

El #1 

N1 (x) 
N3 (x) 

x 3 

1 

N2 (x) 

w(x)  N1 (x)d1x   N2 (x)d2x   N3 (x)d3x 

This is a quadratic finite element in 1D and it  

has three nodes and three associated shape  

functions per element. 
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TASK 2: APPROXIMATE THE STRAIN and STRESS WITHIN EACH 

ELEMENT 

 
From equation (1), the displacement within each element 

w(x)  N d 

Recall that the strain in the bar 

dx 
ε  

dw 

Hence 

 dx  
ε  

dN 
d  B d (2) 

The matrix B is known as the “strain-displacement matrix” 

B  
dN 


 

 dx  
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For a linear finite element 

 1 1 
1 1 -1 

1 2 
x  x 

 
 

 x  x x  x 
B  

 

N  N1 (x) N 2 (x)    
  

 2 1 2 1  

2 

 x x  x 
x 

x - x x - x1 

Hence 

 2 1 2 1  

-1 1 

 
d 2x  - d1x 

x 2   x1 

Hence, strain is a constant within each element (only for a linear element)! 
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  
d1x  

 
x 2 d 2x   x1 x 2   x1 

ε  B d  
 



d2x 

d1x 
x 

x1 x2 

El #1 

x1 x2 

w(x)  a 0   a1x 

Displacement is linear 

Strain is constant 

ε  
d 2x  - d1x 

x 2   x1 

 
x El #1 
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dx 
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  Eε  E 
du 

Recall that the stress in the bar 

Hence, inside the element, the approximate stress is 

  EB d (3) 

For a linear element the stress is also constant inside each element. This has the  

implication that the stress (and strain) is discontinuous across element  

boundaries in general. 



Summary 

 
Inside an element, the three most important approximations in terms of the 

nodal displacements (d) are: 

 
 

Displacement approximation in terms of shape functions 
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  EB d 

(1) u(x)  N d 

ε(x)  B d 

Strain approximation in terms of strain-displacement matrix 

(2) 

Stress approximation in terms of strain-displacement matrix and Young’s modulus 

(3) 



Summary 

 
For a linear element 

 
Displacement approximation in terms of shape functions 

   
2 

d2x  

d1x  

x 2   x1 

 x - x x - x1 

x 2   x1 

u(x)  

Strain approximation 

Stress approximation 

 
  
 1x 

1 2 d2x  

d 
1 1  

x  x 

1 
ε  

 
  
 1x 

1 2 d2x  

d 
1 1  

x  x 

E 
  
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